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ABSTRACT:

A multifle×ible body dynamics code intended for fast turnaround

control design trades is described. Nonlinear rigid body dynamics

and linearized flexible dynamics combine to provide efficient

solution of the equations of motion. Comparison with results from

the DISCOS code provides verification of accuracy.

INTRODUCTION

Control design for complex multiflexible body dynamical systems

requires many computer runs of simulations with high CPU usage.

The high fidelity computer codes which currently address this

nonlinear dynamics problem ( for example, DISCOS, ref. I, and

TREETOPS_ ref. 2) cannot provide sufficiently fast computer

turnaround. To adequately address the control structure

interaction problem_ structural analyzers for this work should be

embedded within a control design code having available an entire

repertoire of control simulation and analysis tools. The high

fidelity dynamics codes are not designed for convenient use in

this way. High fidelity analysis methods are needed, however.

The nonlinearities of large motion multibody dynamics suggest that

control design based on linear analysis will fail to assess

performance accurately, and may"also fail to identify stability

problems during prolonged slewing motions. Thus there appears to

be a deficiency in control structure interaction design

methodology for nonlinear multiflexible body systems. The SADACS

(Spacecraft Appendage Dynamics And Control Simulation) code

attempts to address a range of problems in this category.

Most multifle×ible body dynamics problems are essentially linear

in their flexible behavior even though their rigid body motions

may be strongly nonlinear. SADACS was specifically developed for

this type of problem. The present work is a follow-on to the

approach described by Hassul and Heffernan in reference 3. SADACS

is embedded within the Boeing EASY5 control design and simulation

system which provides a wide range of simulation tools, linear

control design methods, and nonlinear time domain integration

options. The approach achieves high computational speed by

solving the flexible dynamics equations in diagonalized system

mode form. It solves the fully nonlinear rigid motion problem in

parallel with the flexible solution, providing an accurate total

motion prediction for most nonlinear dynamic response problems.
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Large angular motions cause gradual changes in the flexible system

modes, and these changes are handled by updating the system modes.

Very little error in the flexible motion is caused by this

updating, no error is induced in the rigid solution, and little
increase in computational time occurs.

SADACS is operational in a number of Boeing applications involving
complex control structure interaction problems. It has been

verified by comparisons with predictions of the DISCOS code.

Computational speeds have varied from several times faster than

DISCOS for small problems to 100 or more times faster_for larger
problems. It is routinely used for problems that are

computationally infeasible for the high fidelity codes which solve

the coupled, nonlinear structural equations of motion in terms of
the flexible modes of individual appendages.

Because SADACS is an approximate approach, it must be verified

when it is used for problems which have a stronger degree or

different type of nonlinearity than that previously studied.

date, however, it has been found highly accurate for complex
multiflexible body dynamics problems.

TECHNICAL APPROACH

To

The handling of structural flexibility in SADACS parallels the

approach of conventional structural analysis. The several bodies

of the system are represented by their component modes, retaining

corresponding freedoms at the attachment points. They are then

coupled to form the equations of the total system by performing a

conventional structural merge. This greatly simplifies setting up

the flexible equations of motion in comparison with the fully

nonlinear formulation used by codes such as DISCOS.

Since this approach omits all nonlinearities, a separate nonlinear

analysis is performed in parallel with the flexible solution.

This solution addresses only the rigid motions, thereby retaining

the nonlinearities of greatest Importance in most problems. The

separation of rigid and flexible solutions can only be done with

the flexible formulation in system mode form. Therefore, SADACS

performs an eigensolution to obtain a system normal mode

representation of structural flexibility. T_e use of normal modes

provides the improvement in computational time which is the aim of

the SADACS development.

Though this approach appears both simple and logical, its

implementation involves approximations in mathematical derivations

which are difficult to justify and to understand as regards

physical meaning and probable consequences in problem solutions.

The concerns center on the handling of the rotations and their

rates. Each of the technical sections which follow attempts to

identify the mathematical approximations as they are introduced

and to describe the physical nature and possible magnitude of

errors which may occur in simulations.

The technical details of SADACS center on three main subjects:

1. Definition of the flexible structural model in terms of
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the modes of its component bodies.

2. Use of the structural definition to set up the

multiflexible body equations of motion, accounting for the

gimbal freedoms and torques.

3. Eigensolution, truncation of system modes, and handling of

truncated modes in dynamic analysis.

4. Simultaneous solution and combination of separate rigid

and flexible dynamic response problems.

These subjects and the important matters of verification of

accuracy and computational speed are discussed in the sections
which follow.

Definition of the Structural Model

Figure 1 illustrates the type of multiflexible body system to be

studied. A four body chain topology is shown, although SADACS

also handles a tree topology. Each body has a coordinate frame

which is used for its structural analysis. Bodies 1 and 2 in this

figure are each attached to two other bodies. At their attachment

points these bodies each have 6 degrees of freedom. Using the

Craig-Bampton component body modal formulation (refs. 3_ 4), these

freedoms are defined by stiffness and mass data. They are treated

as coordinates, called constraint modes, and have modeshapes which
involve deformations of the interiors of the bodies. The

modeshapes are computed by imposing, one at a time, the

displacements and rotations of the attachment points and

performing static structural analyses of the resulting

deformations. Taken as a group, the attachment point freedoms

combine to provide rigid body motion. For this reason, the

constraint mode set cannot be easily truncated. They also provide

the flexibility of the bodies in response to forces and torques

applied externally to the attachment points.

To supplement the constraint modes, dynamic flexible modes of the

bodies are computed with the attachment points completely fixed.

These are called the fixed interface modes. Taken together, the

constraint and fixed interface _odes provide a complete

description of the motions of the bodies in modal coordinate form.

The fixed interface modal set is usually truncated.

The structural modelling described above contains implied

approximations due the handling of the rotations. The use of the

constraint modal coordinates to define rotations is a

superposition procedure. It ignores the fact that rotations are

only superimposable in a specific sequence defined by the physical

construction of a gimbal device and properly accounted for in

mathematical procedure. If the rotations are sufficiently small,

however, they can be treated by superposition. Therefore, the

modal approach taken here is only valid for the flexible portion

of the motion, in which the rotations are very small. In

addition, the use of the body structural analysis frame as a basis

for the definition of the constraint mode coordinates ignores the

fact that the actual orientations of the axes of the interbody

attachment constraints are influenced by flexibilty. There are

situations in which this is important, as in the case of a very

flexible body attached to another body which is massive or which
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has large angular momentum. SADACS does not attempt to address

these types of problems. Finally, the structural analysis frame
is treated effectively as an inertial frame becausethe constraint

modes referred to this basis provide the only means of rigid

motion of a body. If a body has large motions in either rotation

or translation, they must be represented by large values of the

constraint mode coordinate values. Numerical difficulty could

then be encountered in the use of the constraint mode stiffnesses.

These are typically very large and are not well suited to analyses

in which they must create reactions to large, nearly rigid

motions. Therefore, if SADACS were to simulate a trapsient

response using the structural model rather than the separate rigid

motion solver to compute the rigid motion, errors typical of

inertial grounding would likely occur. However, the code is never

used in this mode, and the restriction of the structural model to

simulate only the flexible motion eliminates this concern.

Equation 1 gives the relationship of the Craig-Bampton modal

coordinates to the discrete physical freedoms of a single body.

= (i)
'X_ PZC

where <dz> and <d=> are the discrete motions of the interior and

boundary gridpoints, IF'z=] and [F'=w] are the modeshapes defining
the interior motions due to the constraint and fixed interface

modes, and <q=> and <qw> are the constraint and fixed interface

modal coordinates, respectively. The vectors <d=> and <q=> are

identical. The discrete freedoms include both displacements and
rotations.

The Craig-Bampton modal coordinates are not uncoupled as

structural normal modes are. The equations of motion of the body

in this form have inertial coupling between the constraint and

fixed interface modes. Equations 2 and 3 show the forms of the

symmetric modal coordinate mass"and stiffness matrices for a

single body

i= M_ M_c

[M] LM=. M=c

= K P'," 0

[K ] L 0 Kc:

(2)

(3)

where the subscripts FF, FC/CF, and CC indicate the fixed

interface modes, the coupling between the fixed interface and

constraint modes, and the constraint modes, respectively. The

matrices [K_] and [M_] are diagonal. [Kc=] is generally full,
but there is no stiffness coupling between the constraint and

fixed interface modes. The mass coupling matrices [M_=] and [M=_]

and the constraint mode mass matrix [Mcc] are generally full.
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Bodies 3 and 4 in figure 1 are each attached to only one other

body. These bodies also have both constraint and fixed interface

modes, but they have a simpler and more familiar form in these

cases. The constraint modes are simply the rigid body

displacements and rotations of the bodies imposed by their

attachment point motions. The _ixed interface modes are simply

the cantilever modes of conventional structural analysis.

SADACS handles tree topology structural systems in which there are

bodies with more than two attachment interfaces. In figure 1, for

example, body 1 could have several additional appendages. In such

cases, a larger number of constraint modes is defined. As the

number of constraint modes is thus increased, the body becomes

effectively stiffer in the numerical descriptions of both its
constraint and fixed interface modes. The modes become less

effective descriptors of the system dynamics, modal convergence

deteriorates, and retention of large modal sets becomes necessary.

In the SADACS approach, this does not cause any difficulties

because the system is subjected to eigensolution and truncation.

However, for approaches which solve the equations of motion in

component mode form, the Craig-Bampton formulation may lead to

large problem size and difficulty in integrating the equations of
motion.

The coordinate systems of the structural modal analysis dictate

procedures for the use of the modal data in subsequent multibody

analysis. Figure 1 shows that each body has a coordinate triad

which is used for its structural analysis. No generality is lost

if all of these triads are parallel. Thus, each body's
displacements and rotations are referred to the same basis

vectors, called herein the structural analyzer global basis. The

structural analysis is performed with the bodies in specific

relative orientations to this global basis, called herein the

nominal orientations. The modal data are therefore readily used

to study the system in its nominal condition. If the bodies are

to be studied in off nominal orientations, the structural data are

still valid and the structural _nalyses need not be repeated.

Transformations of the appendage constraint mode vectors can

return these vectors to the global basis. Figure 2 illustrates

this situation. Body 2 in the figure has been rotated to an off

nominal position. The structural analysis has not been repeated

for this new orientation. The body 2 modal data are still valid,

but are referred to the rotated body 2 basis rather than to the

global basis. This requires a compensating transformation of the

constraint mode data when the multibody attachment equations are
formulated.

Multibody Structural Merge

Figure 1 shows all bodies of the system oriented nominally, so

that their body frames are parallel to the global frame. The

modal data of each body are re÷erred to the global basis system.

The fixed interface modeshapes contain displacements along, and

rotations about, the axes of the global system. The constraint

mode coordinate vectors contain displacements along and rotations
about these axes. If any bodies are rotated to off nominal
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orientations, their modal data become referred to the

correspondingly rotated material frames as indicated by figure 2.

The derivations of this section consider both nominal and off

nominal orientations in imposing the interbody connectivity
conditions.

The first step of the derivation is the transformation of the

constraint modal coordinates to the basis systems of the gimbals.

This allows the individual body mass, damping, and stiffness

matrices to be combined into total system coupled matrices by

enforcing compatibility of adjacent body displacements and

rotations. This procedure is called a structural merge. No

transformation is required for the fixed interface modal data.

It is in the structural merge that the approximations of the

flexible body linearization become difficult to visualize and

understand. The present approach differs in part from the fully

nonlinear formulations in that it omits second and higher order

terms in the acceleration equations. This causes approximations

in inertia 10ad distributions on the structural components and

therefore in the equations of motion. The higher order terms are

present in high fidelity codes because at the outset they assemble

the equations of motion for bodies residing in a rotating

assemblage. This defines accelerations due to products of the

angular rates with themselves (centrifugal and gyroscopic

effects>, and with the modal rates (Coriolis effects>. These are

omitted at the outset when the modal equations are developed in

conventional structural dynamics form. The omitted terms are very

small except in cases where large angular rates and large

flexibility combine. Hence SADACS is seen to be limited by the

combination of angular rate and structural flexibility.

Other approximations are made in the procedure for imposing

connectivity between the bodies, due to the manner of handling the

orientations of the gimbal axes. In the high fidelity codes, the

motions of the gimbal axes are represented exactly, including the

effects of large rotations and _tructural flexibility. The

influences of the gimbal motions on the motions of the bodies are

therefore computed exactly. In the approximate derivations of the

present approach, however, modal data are used to define flexible

rotations and modal coordinate rotation quantities are transformed
as though they were the components of a vector. The influences of

the gimbal orientations are therefore approximated. This

treatment is accurate if the flexible rotations are very small, so

that superposition of angular motions can be done without regard

for the order in which they occur. The justification of this

treatment is that the structural merge is used only to model the
small flexible contributions to the rotations.

In addition, transformations are applied to all of the matrices of

the modal coordinate formulation without including the influences

of the rates of change of the transformations with time. Since

differentiation of the transformation matrices generates

quantities that are proportional to the angular rates, this is

equivalent to omitting nonlinearities due rotational rates. The

justification of this approximation is that the inertial loadings
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applied to the flexible modes due to the rotational nonlinearities

cause very small deformations for most problems. If extremely

flexible structures were to be simulated, or if the angular rates

were very large, then this would not be an acceptable

approximation. Therefore it is again seen that SADACS is limited

in the degree of both flexibility and angular rate which it can

accurately address.

Finally, the structural merge is performed at a particular set of

body orientations, and the structural model is only valid for this

particular condition of the system. To address the _hanges in the

flexible character of the system as the relative orientations of

the bodies change with time, SADACS incorporates an updating

feature which re-merges the system and computes new flexible

modes. The details of this procedure are not covered in this

paper.

Figure 3 shows the coordinate systems which are required to set up

the multibody structural merge. To simplify the figure only two

bodies are shown, but the discussion is easily extended to the

case of many bodies. Each body has the same global coordinate

system, designated by the letter "N". The hinge between the

bodies uses two coordinate triads to describe the gimbal

rotations. Following the nomenclature of DISCOS, reference 1, a

"p" triad Is de÷ined on the "inboard" body of the pair, and a "q"

triad is defined on the "outboard" body of the pair. These triads

are bound to the material of the bodies, and it is convenient to

refer to a "p" body and a "q" body. A sequence of three Euler

rotation angles, TH1, TH2, and TH3, rotate the p triad into the q

triad. Since the triads are material bound, this rotates the q

body, positioning it relative to the p body.

The p triad must contain the axis about which TH1 occurs. This

can be any one of its axes. The p triad must also contain the

axis which, after the TH1 rotation, will be the physical gimbal

axis for the TH2 rotation. This can be any axis of p other than

that of the TH1 rotation. The q triad must contain the axis of

the final rotation of the Euler sequence_ TH3, and, when TH3 is

zero, also the axis of the TH2 rotation. In general, these

requirements prevent the N system from being identical to either

the p or the q system.

There is a degree of arbitrariness in the definition of TH1 and

the p system. The p frame may contain the TH2 axis when TH1 has a

zero value. In this case, the value of TH1 positions the q body

with respect to the p body subsequent to the nominal positioning

and the initial value of TH1 in dynamic analysis is zero. The

rotation from N to p participates in the body 2 nominal

positioning in this case. Figure 3a illustrates this definition.

Alternatively, the p frame may not contain the axis of TH2 when

TH1 has a zero value. In this case, the value of TH1 orients the

q body with respect to the p body for both nominal and subsequent

positioning, and the initial value of TH1 in dynamic analysis is
nonzero. There need not be a rotation from N to p in the nominal

orientation in this case. Figure 3b illustrates this definition.
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Consider a general gimbal device which allows three Euler angular
motions THI, TH2, and TH3. The direction cosine transformations

of each angular motion are easily computed and are defined here by

the matrices [T1], [T2], and [T3]. Defining the basis vectors of

the p and q frames by <Up> and <Uq)., the total direction cosine

transformation from the p basis to the q basis is

<U=7 = [T3][T2][T1]<U_p> (4)

The product of the direction cosine matrices above will be denoted

by [T321]. Defining the p frame cartesian components of the

angular rate of the q body 5ith respect to the p body by <wp> and

the Euler angle rates as <TH>, these components are related by

<wp> = [F'i]<TH> (5)

The matrix [Pi] is a function of the Euler angles TH1 and TH2 and

is not orthogonal. There are 12 possible forms of [Pi] depending

on the particular physical axes of the gimbal which correspond to

the sequenced angles THI, TH2, and TH3 (ref. 6>. Equation 5

allows definition of the non-orthogonal basis system of the gimbal
axes, defined by <G>, as

<G_> = [Pi]"<U__p> (6)

The angular rate of the q body with respect to the p body can be

expressed in either the p basis, as in equation 5, or in the q

basis. Denoting the latter by <wa>, the [T321] transformation of
equation 4 gives

<wq> = [T321]<wp> (7)

Combining equations 5 and 7 gives

•,wq.. = [T321][Pi]<T > (8)

The matrix product above is defined as [Qi]. Thus,

[Qi] = [T321][Pi] (9)

and

<w,_> = [Qi]<T_':' (10)

The gimbal basis can now be determined in terms of the q basis.

Following the forms of equations 5 and 6,

<G_> = [Qi]'r<U_,:,':. (II)

The transformation from the p basis to the N basis is defined as

[pTN], and that from the q basis to the N basis is defined as

[qTN]. In SADACS these matrices are approximated by their rigid

body definitions and are therefore constant in time. The

transformations are

<UN._ = [pTN]<U_p> (12)
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and

<UN> = [qTN]<U=> (13)

and define the structural analysis basis, <UN>, in terms of the

two hinge cartesian bases, neglecting the effects of flexibility

within the individual bodies.

The p body constraint mode transformation to the gimbal basis can

now be defined. Denoting the transformed <q=> vector for the p

body by -(r=p>,

<qo> = [[pTN][Pi]]'<r:p> (14)

where the notation [ ]* indicates that this transformation

"stacks" the [pTN][F'i] matrix as 3x3 partitions along the diagonal

in order to transform both the displacement and rotation freedoms.

For the q body the transformation must consider the possibility

that the body may be in an off nominal orientation. This makes it

most convenient to transform from the q basis to the gimbal basis.

Denoting the transformed <q=> vector for the q body by <r==>,

<q-_> = [[qTN][Qi]]*<rcq> (15)

The matrix [Qi] contains the positioning information which

accounts for the off nominal orientation of body q.

The transformation matri:.{ products in equations 14 and 15 will

both be denoted by [rTN]" and it will be recognized in their use

below that they are numerically different for the p and q bodies.

The mass matrix of a single body, equation 2, is transformed to

the gimbal rotation components by

I 0 MF_ M_c 0

[[rTN]'] LM=_ MocJ [rTN] (16)

The stiffness matrix, equation 3, is also transformed by equation

16. In this case there are no off diagonal Eartitions in the

calculation or the result.

The generalized loads applied to interior points of bodies are

transformed by the matrix on the left in equation 16. The gimbal

torques are defined in the gimbal bases and do not require

transformation.

The compatibility condition for the attachment, or structural

merge, of the bodies is

(17)

where <r=_Z::., <r=p,>, and <r=q,> are the common p body and q body
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freedoms which are locked and the p and q body freedoms which are

free to have relative motion, respectively. II, 12, 13, and 14

are selector matrices which define the interbody compatibility
conditions.

For simplicity of notation the vector rc will be defined,

<r=> = _r=p_ (18)

Lrcq_

To derive the equations of motion of coupled bodies, the mass,

damping, and stiffness matrices and the generalized loads of the

individual bodies are first assembled without imposing the

constraint conditions. The result is illustrated for two bodies

by the mass matrix below.

FMFF Mr_cp Mr_cq ]
0

IMrc.F Mrcpep Mr=qclq_j (19)kMr Fo. 0

The matrix partitions denoted by [Mr] have been transformed to the

gimbal bases as described by equations 14-16. The subscripts F,

Cp, and Cq denote the fixed interface modes, the constraint modes

on the p body, and the constraint modes on the q body,

respectively. The stiffness matrix corresponding to expression 18

has null off diagonal partitions. This form of the equations

expects the freedoms to be ordered <qF.'.:.,<rcp>, and <r=q>. The

e,vtension to the entire system is accomplished by stacking

additional partitions in expression 19.

The equations of motion are to be assembled by subjecting the

freedoms to the constraint of equation 17. The constraint is

written

r=p = 0 I 1 I2 0 rop_ (20)

kr=_j I3 0 I lr==_|
(r o J

Defining the selector matrix in equation 20 _y [II], the

transformations are accomplished by pre-multiplying the system

mass, damping, and stiffness matrices by [II] T and

post-multiplying the result by [II]. The generalized loads are

transformed by pre-multiplying by [II] T. This procedure involves

only simple row and column operations and is most easily performed

by additions rather than by the matrix multiplication process.

The result of this final step is the component mode equations of

motion of the SADACS flexible body solver.

System Modal Analysis

The coupled component mode equations of motion are diagonalized by

eigensolution of the merged, second order structural equations of

motion. No linearization of the rigid motion equations is

required for this task. Damping is usually omitted in the
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component mode equations, leading to a generalized real symmetric
eigenvalue problem with pure imaginary frequencies. Damping is
then added to the system modes after the eigensolution. SADACS
optionally solves the complex eigenvalue problem using assigned
component modal damping. This option has not proved advantageous.
The system modal damping produced usually varies greatly among the
system modes, a situation felt to be unrealistic, and the complex
eigenvalue problem is felt to be less reliably solved than the
real form.

The flexible modeshapes of the system eigensolution are denoted by
[S_]. The system flexible modal coordinates are denoted by <x_>.
The recovery of the component modal coordinate data for the purely
flexible motion is given by

qF} = [S_] <:.:,->rc 121)

The system fle:'ible mode mass and stiffness matrices are computed

by pre-multiplying the corresponding component mode matrices by

[S_] T and post-multiplying the result by [S_]. The resulting
matrices are diagonal. The generalized load vector is computed by

pre-multiplying the component mode load vector by [S_] T.

The flexible system modal set is truncated to reduce computational

effort in the time stepping integration procedure. Denoting the

retained modes by <x_> and the truncated modes by <x_t>, the

equations which are solved are

QI •

_'x,,',->= <XF,.-> - [C,--,.-]<:.-,--,.->-[K,=,-]<;.',,-,.-> (..'_.)

and

<X_'_:> = [ Km'_:]-I.::]X_:.'.:• (23)

where the symbol <X> denotes the generalized 'load_ [C] and [K]

denote the modal damping and stiffness matrices, and the [K] -_

matrix in equation 23 is the diagonal of inverse modal stiffnesses
of the truncated flexible system modes. The subscripts in all

terms follow the definitions given above for the vector <x>.

Equation 22 is given for the case of unit fle_ible mode

generalized mass, which is the normalization provided by the

eigensolver.

The eigensolution, truncation, and time stepping solution

procedure outlined above is extremely fast and has encountered no

numerical difficulties. Several of the advantages of the approach

are discussed briefly in the paragraphs which follow.

The truncation of the higher flexible modes allows the use of a

much larger integration time step than would be required if all

modes were retained. This benefit is not available to approaches

which integrate component mode equations of motion because

truncation of the component modal set can cause serious loss of

accuracy. This is especially true when cantilever appendage modes

are used to simulate systems with free or controlled gimbal
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freedoms. The loss of accuracy is due to the fact that the higher

cantilever modes are important participants in the low frequency

behavior of the dynamical system and therefore need to be retained

in the component mode simulation. SADACS is typically used with

very large numbers of component modes and severe truncation of the

system modal set. This provides a substantial reduction of

computational time and does not cause noticeable loss of accuracy.

The use of equation 23 is critical to the accuracy of problem

solutions. This equation provides the quasi-static responses of
the higher frequency system modes. If the contribution of

equation 23 is omitted, the gimbal angle responses to control

torques may be either under- or over-predicted by substantial

amounts. In addition, the locations of transfer function zeros

are made highly inaccurate by the omission of the quasi-static

responses. It is the use of equation 23 which permits truncation

of the modal set for the integration of equation 22, thereby
speeding the computational process.

Equations 22 and 23 are easily solved because of the absence of

coupling between the modes. The entire flexible solution has been

reduced to a very simple form, leaving the difficult, coupled,

nonlinear analysis problem to the rigid motion dynamics, where it

is known to be most important in the majority of applications.

The computational price which is paid for the modal analysis

simplification is the effort of the eigensolution. This has

proved to be very small in problems solved to date, in comparison

with the computational effort of coupled modal analysis and

integration with small time steps.

Separation of Rigid and Flexible Motions

The SADACS formulation uses separate rigid body (RB) and flexible

body (FB) computer codes. The rigid body code currently used is
the MBDY subroutine due to Likins and Fleischer (ref. 4). This

code was chosen because it is a proven standard and because it

could easily be integrated into-'the Boeing EASY5 system. It has

proven reasonably fast in applications. Other rigid body codes

could equally well be used. The flexible body code is the linear,

small motion formulation of conventional structural dynamics,

derived in the form outlined herein. It is used in system mode

form and omits rigid modes. The flexible boa_ solver is called
from EASY5 as a subroutine.

Figure 4 shows a block diagram of this procedure. The figure

identifies the rigid body solver, RB, the flexible body solver,

FB, and the control simulation. The rigid motion prediction of FB

is seen to be unused, and the flexible prediction is combined with

the RB solution to create the total motion. The total motion

provides the performance of the simulated system and the feedback

data for the controller. It also is used to determine if the body

orientation angles have changed sufficiently to require the
calculation of new system modal data.

The figure indicates the geometric and modal transformations which

have been discussed in the above sections. The gimbal torques are
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generated in the gimbal axis bases and are directly applicable to

the model gimbal freedoms. They must, however_ be transformed to

correspond to the system modal coordinates. Torques applied to

the interiors of the bodies are generated in the body bases_ and

these must be transformed to account for the use of constraint

modal coordinates referred to the gimbal bases. They must also be

transformed to correspond to the system modal coordinates.

After the time integration, the FB responses are back transformed

from the system modal form to the constraint mode form referred to

the gimbal bases. After this transformation, they can be combined

directly with the gimbal rotation data from RB. Because the

flexible contributions to the gimbal rotations are small, they can

be added directly to the Euler positioning angles computed by RB.

The internal body rotations similarly require a modal back

transformation. Since they are needed in the body bases, they

require an additional back transformation to account for the use

of constraint modal coordinates referred to the gimbal basis

systems.

MBDY computes the main body angular rates in the body basis. If

main body angular position relative to the inertial frame is

needed, an integration of these rates is done, taking proper

account of the rotations of the body axes. This is not shown in

the figure. The FB module computes the small flexible angular

rates and positions of identified sensor points in the body basis.

If it is required to obtain these quantities in the Euler angle
basis which defines the inertial attitude of the body, they are

transformed in the manner of equation 10. The equation is

applicable to both rates and positions in this case because the

flexible angles are very small.

The figure shows the modal coordinates and their rates returned to

the equations of motion block. This is required to form the right

hand sides of equation 22.

The decision whether to update £he system modes is based on the

magnitudes of the gimbal angles. If updating is not required, the

solution continues with the commanded data and the feedback

signals returning to the controller. If updating is required, the

computational process exits to a set of updating routines. After

computing new system modes and modal coordinate values and rates,

the process returns to the integration routine as indicated by the

figure. At the return, the new modal data have replaced the old
modal data.

DISCOS-SADACS Comparisons

The approximations which have been used to reduce the

computational time of SADACS cannot be quantified as to their

accuracy on the basis of judgement alone. The magnitudes of

errors which might occur depend on the magnitudes of the rotations

and the rotational rates and on the sensitivity of the particular

dynamical system to nonlinear influences. An effective way to

verify that an approximate approach is accurate is to perform

comparisons with high fidelity predictions of proven codes for
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problems of the type under study. For this purpose, an extensive

verification of SADACS in comparison with DISCOS was done. The

comparison used identical component mode models in SADACS and

DISCOS. A number of problems were solved for the verification_

all involving large angular motions at rates which caused the

rigid motions to be strongly nonlinear. The results showed that

the SADACS approach is extremely accurate and fast for complex

multiflexible body systems with large motions at moderate rates.

All of the calculations showed that the simplifications of the

SADACS approach result in a large reduction of computer time. The

reduction was about lO0-times for most of the problem_ studied.

Run time reduction estimates are strongly problem sensitive.

Larger problem sizes would significantly increase the speed

advantage of the SADACS type approach over fully nonlinear

approaches. Very small problems have shown only a two to three

times speed advantage. The DISCOS open loop simulations in some

cases required 40 or more CPU hours on a VAX 11-780. These

problems were not large in comparison with other simulations of

complex control structure interaction problems. For many problems

it would not be feasible to run DISCOS simulations_ or probably

any other similar simulations using component modes and retaining

fully nonlinear equations. An approach such as SADACS is probably

the only way to attack such large control design problems.

The elimination of certain nonlinearities within a high fidelity
code can speed its calculations appreciably. The TREETOPS code

has such valuable options and Boeing has developed similar options

within DISCOS. However, it appears that achieving a major speed

increase necessitates transforming the equations to diagonalized

form and truncating the system in order to increase the

integration time step. Thus, the elimination of nonlinearities

may not achieve the level of computational speed increase which is

needed for really large control design problems. In the authors'

view, the real need for high computational speed in high fidelity

codes is to allow verification of approximate codes for

simulations of realistic complexity. This is barely possible at
the present time.

Figures 5-8 show comparisons of DISCOS-SADACS time history

predictions. The figures give the responses of the main body and

one appendage of a complex system. The comm_nd for this problem

was a large rotational excursion of one appendage and the problem

was run without control. Torques were applied to all system

bodies through an inverse inertia matrix such that the rotations

of the main body and the uncommanded appendages were very small

for the initial stages of the motion. At the later stages,

however, nonlinear effects cause all of the bodies to have large
rotations, since no feedback was used to control the motions.

Figure 5 shows the main body x-rotation. Large motions occur in
the later stages of the response due to the effects of

nonlinearities. These motions are not predicted by linearized

simulations. This figure shows that the SADACS use of simultaneous

nonlinear rigid body and linearized flexible body solutions

provides excellent large motion accuracy.
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The triangular excursion at the start of the motion in figure 5 is

due to the effects of flexibility in response to the applied

torque pulse. Figure 6 shows an enlargement of this portion of

the response. In this figure, the SADACS and DISCOS predictions

are separated by two plot divisions in order to permit detailed

examination of the flexible oscillations. It is seen that the

flexible motion predictions are virtually identical. This figure

verifies the FB system mode formulation and shows that the angular

rates have little effect on the flexible responses.

The responses shown on figure 6 and the early portiqn of figure 5

are changed greatly if the correction given by equation 23 is
omitted. The magnitude can change several-fold and the sign of

the early response may also change due to such omission. This was

observed in comparisons of DISCOS with a linearized code which

omitted the quasi static deformation correction. In this case,

the modal truncation was done by the structural analysis procedure

before creating the data for the control design simulation.

Figure 7 shows the main body z-rotation_ again in an enlarged plot

to allow close examination of the flexible response. The SADACS

and DISCOS predictions are indistinguishable on the plot.

Figure 8 shows the rotation aho t one gimbal axis of an

uncommanded appendage. The late motions have a strongly nonlinear

response which is predicted accurately by the SADACS simulation.

The comparison verifies the accuracy of the approach of separate

RB and FB solution procedures. This calculation is a more

critical test of the prediction method than that of figure 5

because it emphasizes the coupling effects of the main body

translational motions and the sensitivity of the rigid body

inertia matrix to the angular motions of the main body and the

torqued appendage.

Conclusions

A computer code for multiflexib_e body dynamic analysis has been

developed based on linearizing flexible motions while retaining

fully nonlinear rigid motions. The code is conceptually simple
because its flexible formulation is that of conventional

structural dynamics. It is embedded within a. control design

system, so that it is well adapted to both frequency and time

domain control design applications.

The accuracy and computational speed of the code have been

evaluated by comparisons with the predictions of DISCOS for

problems with strong rigid motion nonlinearities and moderately

flexible structural components. The approach has been found to be

exceptionally accurate and fast.

The accuracy evaluations have shown that multibody flexible

nonlinearities are usually extremely small while rigid

nonlinearities are almost always sufficiently large to require

simulation in control design work.
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The computational speed evaluations have shown that the key factor

in the slow speeds of the fully nonlinear, high fidelity multibody

simulations is their integration of the coupled equations of

motion in terms of component modal coordinates. This type of
formulation is required to permit full retention of flexible

nonlinearities. It results in excessive computation time because

of the processing of the flexible rotations as large quantities,

the handling of coupling terms in the equations, and especially
because of the small integration time step required by the

component mode representation. The actual computation of the

nonlinear numerical terms in the equations of motion is not a

dominating factor in the slow computational speeds o_ these types
of formulations.

The omission of the flexible nonlinearities allows all of these

time consuming computations to be eliminated. The result is a

very fast approximate approach which can attack the

computationally demanding problem of control design trades while

maintaining sufficient accuracy for performance predictions.

References

Bodley, C., Devers, A., Park, A., and Frisch, H., "A Digital
Computer Program for Dynamic Interaction and Simulation of

Controls and Structures (DISCOS>," NASA Tech. Paper 1219, May 1978

Singh, R. and VanderVoort, R., "Dynamics of Flexible Bodies in

Tree Topology-A Computer-Oriented Approach," J. Guidance, Vol. 8,

No. 5, pp. 584-590, Sept.-Oct. 1983

Hassul, M. and Heffernan, D. L., "Simulation of Large Spacecraft

with Rotating Appendages," AIAA-80-1667, AIAA/AAS Astrodynamics

Conference, Danvers, Mass., Aug. 11-13, 1980

Craig, R. R. and Bampton, M. C. C., "Coupling of Substructures

for Dynamic Analysis," AIAA Journal, Vol. 6, July 1968, pp.
1313-1319

Fleischer, G. E. and Likins, P. W., "Attitude Dynamics

Simulation Subroutines for Systems of Hinge-Connected Rigid

Bodies," NASA-JPL Technical Report 32-1592, May 1, 1974

"Spacecraft Attitude Determination and Control," Edited by J. R.

Wertz, the D. Reidel Publishing Co., 1978

994



y2

F|gure 1 ' Multibody System Example

Off-nominal
body orientation

Nominal body orientation

Ftgure 2 Nominaland Off-Nominal Body Frames

TH1 initially zero

, P

Z

Ftgure 3a

Ftgure 3

TH1 initially nonzero

Figure 3b

Definitions ot Gimbai Coordinate Frames

995



Initial conditions ]Model definition

Internal Gimbal Modal values
torques torques and rates

Gimbal

Return from
updating
routines

Gimbal Internal
rotations rotations

[C°mmands I_ _ _ R8

Nonlinear
Torque
determination Actuators rigid

dynamics

CONTROL

Figure 4 SADACS ComputationalFlow

Exit to
updating
routines

Rotation angle
.°

I

DISCOS and.

SADACS

_qq_

\
\j

0 5 10 15

Time

i
L

_L

/
/
/

Figure 5 DISCOS-SADACS (_omparison:

Main Body Sensor X Rotation Due To Appendage Command

996



DISCOS

SAE

Rotation angle

0 .4 .8 1.2 1.6 2.0 2.4
• • Time

Figure 6 DISCOS-SADACS Comparison:
Main Body Sensor X Rotation Due To Appendage Command

\

Rotation angle

\
L

A

J
DISCOS_!_

DACS
I

f_

0 ,4 .8 1.2 1.6 2.0 2.4
Time

Figure 7 DISCOS-SADACS Comparison:

Main Body Seneor Z Rotation Due To Appendage Command

997



Rotation angle

DISCOS and
SADACS

/

f

/
/

/
r

/

./
I

/
/

f

() • - 5 10 15
Time

Figure 8 DISCOS-SADACS Comparison:

Hinge Rotation of Un.Torqued Appendsge Due To

Commend on Another Appendage

998


